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1. We will begin the consideration of the problem with the case of 
free flight of a satellite. lbe equation of motion of its inertia center 
C will then be of the form 

-. r=-+ (1.Q 

where lp =OC is the radius vector of point C with the origin at the 

earth’s center; n is the product of its mass and the gravitational con- 
stant. * The forces of nongravitational origin are assumed .absent. 

‘Ihe location of the point M falling within the satellite cabin will 
be defined by the radius-vector p = chl; its equation of motion will be 

* We neglect the terms depending on the oblateness of the earth, as 

well as the terms proportional to the squares of the relations of the 
principal central radii of inertia to the radius-vector r. In taking 

into account the latter correction, the following term should be added 

to the right-hand side of equation (1.1) 

+&r. (-$ Bb+ ;r.w.r4) 
where 8’ is the central tensor of inertia of the satellite. 6 is the 

first variant of this tensor (sum of the central moments of inertia). 

E is the unit tensor and M is the satellite mass. In taking into 

account this correction, the terms proportional to the attraction of 

the point by the masses within the satellite should also, apparently. 

be added to the right-hand side of equation (1.2). 
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(l-2) 

E$J eliminating i; with the aid of the equation (1.1) and by retaining 
only the linear terms in p, we obtain the equation 

(1.3) 

whose right-hand side characterizes the nonhomogeneity of the gravita- 
tional field within the satellite cabin. ‘Ibis represents a variational 
equation for the motion of the center of inertia (1.1). Its general in- 
tegral, containing six constants representing the elliptic elements of 
the orbit 

(1.4) 

is known. The derivatives of the radius-vector r with respect to these 

constants represent, as is known, the solutions of the variational equa- 

tion (1.3). 

Iiaving formed certain linear expressions with respect to these deri- 

vatives, we obtain the system of functions 

3n - . 311 q1= [ --- : 2)1;-_yn~ (t f”) 1 (1 
-.- 

er- 2/-l__@ 
-I_? (1 + ecoscp)e, 

q2 = 
2+ ecoscp . 

--ower + 1 +ecosqsve, 

q,=sinpe,+:~~~~~~cosrFe, 

(e8 = e2 x e,) 
(r = re,) (1.5) 

IIere er, e?, e3 are unit vectors of the orbital trihedron of the 

satellite; e3 is normal to the plane of the orbit. 

‘Ihe expression for the radius-vector r is of the form 

a (i - e”) 
r = 1 + ecosfp, (l-6) 

where cp denotes the true anomaly. 

The constants t0 and n denote the time of passing of the perigee and 

mean motion (circular orbital frequency of rotation). Taking into 

account the well known relations of Keplerian motion (1.7) 

6, = n 1” 1 - e2 $ , 
nea 

i = - VC2sin cp, & = &, k, = - Tj3er, & = 0 
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we construct now the expressions for time derivatives of the vectors q, 

e cos cp) e, + e sin cpe,] 

The vectors q, and I& form a system of integrals for the equation of 

motion (1.3) of the point M. ?he square 6 x 6 matrix for the projection 

of these vectors on the axes of the orbital trihedron can in the follow- 

ing analysis be replaced by two matrices of 4 x 4 ancl 2 x 2 

9. e, ~2. e, q3. e, q4. e, 

QI - ev g2 ‘e, ~3. ev q4’ e, I 

41. e, &2 ’ e, 43 f e, b4. e, = af 

! 
41 . eq 4~. eq ;I3 e, &. e, 

I fl5 * eS Qe 1 4 i 

: 45 . ei 45. e31, = 
P (1.9) 

The determinants ICI/ and IpI of h t ese matrices are the Wronskians of 

two systems of linear equations of fourth and second orders, obtained by 

projecting the vector equation (1.3) on the axes of the orbital tri- 

hedron; the diagonal elements in the matrices of the coefficients of the 

right-hand sides of these equations are absent and therefore the 

Wronskians are constant; they can be easily computed by letting t = t0 

and Q = 0. \Ye find 

IQ[ .LT -+-n2, IPI=n JOY? (1 .lO) 

Thus, the solutions (1.5) and (1.8) are linearly independent; they 

remain such also in the case of a circular orbit (for e = 0). Ihis was 

obtained by proper choice of the linear combinations of the derivatives 

of the radius-vector r with respect to the constants (1.4). 

In the following the inverse matrices will be required 

@y = a-l, 6 = p-1 (1.11) 

IIe computation of y is somewhat unwieldy but it can be partly avoided 
by considering the existence of the coupling of the elements in tile 

third and fourth rows of this matrix with the derivatives of elliptic 
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elements which are known in the theory of 

ments. lhe expressions for the matrices y 

Appendix. 

perturbation of elliptic ele- 
and 6 are given in the 

lhe vectors p and F, defining the position and velocity of the fall- 

ing point M in the cabin of the satellite fixed in a moving coordinate 

system with the origin at the center of inertia C are now represented 

in the form 

(1.12) 

lye will assume that the angular velocity vector o of the Cxyz system 

attached to the satellite is known. ‘Ihen, denoting by p* the velocity 

vector of the point M relative to these axes (relative to the cabin), 

we have 

p=j+toxp (1.13) 

Therefore, assuming here and in the following, that the separation 

of the point M from the cabin occurs with a zero relative velocity, we 

obtain the initial conditions 

t = t,, p = pot p=u”x p” (1.14) 

We will note that during such shockless separation of the point A! 

the angular velocity vector o remains continuous. lbe expressions for 

the constants CS in the solution (1.12) are now written in the form 

Cs = rslCpo - era $ rszopo . coo + rs3’ (0’ x p”) . era + rsqo (u” x p”) . ei 
(s = i, 2, 3,4) (1.15) 

Cd+k = 6kl”po ’ e3 + 6k2’ (0.1’ x p”) - e3 (k = 1,2) 

A relatively simple expression for the vector p is obtained in the 

particular case when the separation of the point iu from the cabin 

occurs at the instant of passing through the perigee (t, = tO, q~ = 0) 

and the satellite is at that instant stabilized in the orbital axes 

(0’ = e3b0). Ilen 
(1.16) 

p = [2* q, + ‘+_y q2] pc . era $- +e qppc . eo3 _+ (!_+!Y po . e3e3 l_tecosT 

wllile in the case of a circular orbit (e = 0, q~ = nt) 

p-p0=e3xp ‘siuv - ~“(1 - coscp) + 

-t- 3p” . era X [ (1 - cos cp) c, - 2 (cp - sin cp) e,] (1.17) 
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For the circular orbit, in the general case (i.e. for o” # egn) we 

get (it may be assumed t+ = 0) 

p-pp”=+-~ox p”sincp+ 

+ (I-coscp){-p”+ [p’.e,O+2($ xp”)mev”]e,- 

- 2 p”. e,’ + 
[ 

-& (d x p") . era] e*} - 

- 3 (cp - sin cp) p” . era + 
L 

+- (eP x p") . eqo] e, + 

+ since {[p’ . coo + + (cu’ x p') . era] (e,’ - e,‘) - 

- p” . era 
C 

- + (u’ x p") . epol (e9 - eqo)} (1.18) 
. 

For o” = ep we return to the expression (1.17); in the inertially 

stabilized satellite (for t = 0) o” = 0 and the first order terms rela- 

tive to q~ = nt are omitted. 

Neglecting the nonhomogeneity of the gravitational field within the 

satellite, and for the same initial conditions (1.14) we would obtain 

p =o, p-+=+w”x p”nt (1.19) 

A comparison with (1.18) shows that the influence of the gravitational 

nonhomogeneity is reflected in the terms of order (nt)‘. 

Returning to (1.18), let the inertial axes coincide with the orbital 

axes at time t = 0 (i.e. in the directions era, e ‘, es) and denote by 

y, 6, x the Euler angles defining the directions $f the system Cxyz 

relative to the inertial system. Here p (pitch) is the angle of rotation 

about the normal to the orbit plane e3, 6 (yaw) is the angle of rotation 

about the displaced axis era (local vertical in the satellite before 

rotation), x (roll) is the angle of rotation about the twice displaced 

axis e O: the latter direction defines the axis Cx, while the axes Cy 

and CZ 
Q 

will be along the directions of e3 and er. Assuming the Euler 

angles small, we obtain the following table of direction cosines: 

(1.20) 

lplylz I z I y I z 

“9” 1 --6 9 e,!cospl+$sincp -@c.oscp-xsincp $cosp-sincp 

%’ 6 i -_x es 6 I -X 

e,” - rB x 1 % sincp-Vcoscp -_sincp+xcoscp coscp+*sinq 

and the expression for the angular velocity vector 
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+@=(-$+6)i,+ (-$+l)i,+ ($--X)i, (1.21) 

Now, it is easy to express the running coordinates x, y, z (projec- 
tions of p) of the falling point in terms of its initial coordinates x0, 

Yo, 20’ ‘lbese formulas will contain the angles 9, 6, x, their initial 
values (at the time of separation from the cabin), and the initial values 
of their derivatives. 

2. A more difficult problem of the falling point in a satellite re- 
sults when nongravitational forces also act on the satellite. lhe acceler- 
ation caused by these forces will be denoted by f. ‘Ihen the equation of 
motion of the satellite center of inertia will be 

“+ r =-+r*+f (2-l) 

‘lhe equation of motion of the point M will, of course, remain of the 
form (1.2) while upon eliminating r+, in place of (1.3) we will obtain 
the equation 

(2.2) 

Retaining the terms in the first group in (2.2), the order of magnl- 
tude of which is glpl/r = 10e6 - lo-’ g, is meaningful only for suffi- 
ciently small values of lfl, i.e. for the forces in the order of, say, 
l-10 g per ton. But for such forces as well as for forces exceeding them 
by several orders of magnitude (say 1 kg per ton), the f-term on the 
right-hand side of (2.1) will be quite small compared to the force of 
gravity and, consequently, for small intervals of time (one or two re- 
volutions) it is permissible to consider f as a term perturbing the basic 
Keplerian motion of the center of inertia of the satellite. lherefore, 
letting 

r* = r + br (2.3) 

where r defines the Keplerian motion and satisfies the differential equa- 
tion (1.1)) we obtain the nonhomogeneous linear differential equation 

(5r)” = -$ (3 ‘+r - ar) + f (2.4) 

in which f is given for the Keplerian (and not actual) orbit of the 
sate11 ite inertia center. 

The general solution of the corresponding homogeneous equation is 
known. Utilizing the method of the variation of parameters, we let 
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and in order to determine D,(t) we obtain the system of linear equations 

6 6 

With the aid of the matrices y and 6 we obtain (2.7) 

D, (t) = ’ (r,,e, + y,e,) - fdt 

t 

I; 

(s= f,2,3,4). Dl+k= i&f .e3dt (k=1,2) 
s 

. 1. 

and therefore 

br =o, (6r) = 0 for = t, (2.25) 

Let us now consider the geometric sum 

terms of the order of the product IpI 16r P 

+ 6r ; then, neglecting the 

, we obtain from the equations 

(2.2) and (2.4) the homogeneous linear equation 

b; + (ar)** = + [3 +r++W-(p+W] (2.9) 

the solution of which in the form of (1.12) is known. Thus 

(2.10) 

and in view of (2.8) the constants C, are determined by the same formu- 

las (1.15) as before. 

‘lhe most interesting case is that of aerodynamic resistance. ‘lhe 

acceleration created by this force can be of the same order of magnitude 

as the acceleration resulting from the nonhomogeneity of the gravita- 

tional field so that the application of the derived relations is fully 

justified. 

‘Ihe expression for f is here given in the form 

f=--k(r,v)v= - v&*1( v )[ r u esincpe,+(l +ecoscp)e,] (2.11) 

In the case of a circular orbit a very simple calculation with the 
above derived formulas yields 
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p=p*+2y*n+(qJ -sin@+ 2e,(1-ccoscp-$fp~)] (2.12) 

where p+ is determined from the formula (1.18). Neglecting in (2.2) the 
terms due to the nonhomogeneity of the gravitational field, we have 

;=-f, p=p*- (t-_‘)fQ’)& 
c 

(2.13) 
f. 

where p* is given by (1.19). Replacing the vector f(t’) by its projec- 
tions on the orbital trihedron of the satellite center of inertia and 
noting that the axes of the point t are obtained by rotating the axes 
at the point t’ by an angle 0 - 9’ about es, we express (2.13) in the 
form 

(2.14) 

P = P+ -&t - 1’) [f (t’) + g‘ cos (cp - cp’) + f (t’) . e?‘sin (cp - #)I dt’ -- 

L 
t 

-e, 
s 

(t - t’) [ - f (t’) . e,’ sin (q - cp’) + f (t’) . e,’ cos (cp - cp’)] dt’ 

1. 

For example, in the case of the aerodynamic force (2.11) and circular 
orbital motion 

p=p*+ a~(~an)(er(sincp-~cos~)+e,(~sincp+coscp-l)] (2.15) 

‘Ihe lowest terms of the series expansion in the powers of Q, result- 
ing from the presence of the force f, coincide with those obtained from 
the formula (2.12). l’he nonhomogeneity of the gravitational field within 
the space of the cabin is in evidence during prolonged falls. 

Appendix. The eleaents of the q atrlcee y and 6 are 

TX! = 2 f , m=o, Tim= 
?BShlQ 2(f -tec@3Q) 

n)ri’ 
TM = - 

n)/l-es 

~+~cOSQ+~CO!~~Q 

n i+eCOSQ 

i +ecosQ+@ 
i--C Sin Q, ra = COS Q, 
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1 
yjs = -g 

[ 
3 

n (t - to) 
I _ez s sinv - ,;l,,;; (2c-sosg-eeosg)] 

1 
%I-, - 

[ ,I:::; (2 

3n (1 -to) 
f e cos 9p) sin p -/- --_- (1 + e cos (9) e 

1 

3n (t - to) a’ . 2+ecoscp -1 
r41 = (% _ @f/# -p- - s=acp (I _ ez)% 7 -hz = 1 _ ,z 

ru-$ 
[ 

n (t T to) 

3 (I-@)% 

ecoscp+eZcos29)-2 esingp+ VI-eb(l+ecoscp) 1 ’ 

n tt - to) 
(f _ ,Z)Z (1 + e cm v) 

1 

b,I = ~0s T + e 
f--e2 ’ 

bIa = _ j/l--in cp 
n(1+f?coscp) ’ 

&I = sincp 
i-_ez’ 

s, _ t/lcocos q3 
n (1 + c cos cp) 

Denoting 

the vector equation (1.3) will be represented by the system of equations 

The conjugate system is of the form 

. 
Yl = cpY* - 5 ys, l Ys = - Yl + iv.. ?/a = +- ye 

ia=-GYl$-5 y,, i=--ya-+ys, i* = -315 

and ysr = yr (S = 1, 2, 3, 4) will be its solutions. This can be used to 
verify the calculations. 

Translated by V.C. 


